
Python can be tidy too:
pandas recipes for normalizing data

A
rt

 b
y

M
ad

el
yn

 R
uc

k
@

m
ad

ru
ck

us
.d

es
ig

n
Jenna Jordan

jennajordan.me jenna-jordan @JennaJrdn

School of Information Sciences
University of Illinois at Urbana-Champaign

Explore

Transform Verify

Abstract Example
Datasets

Identify Candidate Keys Find Dependent Columns

Multivalued Attributes

Decomposing tables

Referential Integrity

Uniqueness Constraint
A candidate key is some combination of attributes that can uniquely identify
each observation in the dataset. One of these candidate keys will be chosen
as the primary key - ideally the candidate key with the least number of attri-
butes that makes the most sense given the actual meaning of the attribute.

Identifying functional dependencies is the key to the normalization process.
For a database to be in 3rd normal form, each attribute (column) must de-
pend only on the table’s primary key. So if there are a set of columns that can
be functionally determined by another column (or set of columns), that is a
hint that the dataset needs to be decomposed into two or more tables.

You can check which columns can be functionally determined by a candi-
date key with find_dependent_columns(), demonstrated above on the
UCDP dataset. gwno_a can functionally determine other columns that also
describe countries on side A. The combination of conflict_id and the date
the episode started (start_date2) can functionally determine a large subset
of the columns in the ucdp_df dataset.

The ideal way to represent multivalued attributes, in accordance with 3rd
normal form, is to isolate the attribute in its own table - one column (or set of
columns) representing the entity, and one column for a single value. Howev-
er, datasets found in the wild almost never conform to 3rd normal form.

The tidy data philosophy is the foundation for the collection of
R packages called the “tidyverse”, which allow users to easily
transform, model, and visualize data and currently domi-
nates the R data science ecosystem. But while there is no
true equivalent in the Python data science ecosystem, that
doesn’t mean the principles of tidy data and 3rd normal
form cannot be applied in the Python ecosystem.

For python users, most data wrangling tasks are accom-
plished with the pandas library. The pandas library is
extremely flexible and can manipulate tabular datasets
into whatever form a user needs. However, this flexi-
bility also means that it may be difficult for non-ex-
perts to fully utilize the library.

This cookbook was developed for those users who
may be less familiar or comfortable with pandas,
but want to transform their datasets into a tidy
form within the Python ecosystem. The recipes in
this cookbook will allow users to:

When you decompose a dataset into multiple smaller tables, you need a way
to put them all back together again. In a database, foreign keys tell you which
columns to merge on when combining tables - but they also ensure referen-
tial integrity. If a value exists in the foreign key column, it must also exist in
the primary key column. For example, take these two tables:

All of the polities in tc’s gainer, entity, and loser columns should also
exist in pol’s id column, so we know which polity the identifier refers to.

By using the verbose flag, we can see which specific identifiers from the
gainer, loser, and entity columns were not present in pol’s id column.

gainer fails
the referen-
tial integrity
check.

From all three
columns,
there are three
identifiers not
present in the
primary key.

pol contains all states and territories in the CoW
datasets, from 1816 - 2016.

tc records all territorial changes, including the
entity exchanged, the gainer, and the loser.

In a database, the primary key must satisfy the uniqueness constraint - that
is, the primary key value for one row cannot be repeated in another row. The
primary key is the record’s unique identifier, whether it is a single column or
a combination of columns.

The table created by decompose_table(), to the left, visibly does not sat-
isfy the uniqueness constraint. It’s primary key, conflict_id and start_
date2, is repeated for some rows. We can use check_key_uniqueness()
to verify this.

The issue is with ep_end_date - the original dataset was not tidy, and only
recorded the episode end date for rows where the episode ended that year.
For rows with a duplicated conflict_id and start_date2, we need to
drop the row with a null ep_end_date. This is easily done by sorting on
these rows, as the null dates will be placed last.

The table now satisfies the uniqueness constraint, and is ready to be inserted
into a database! Or, you can simply save this newly tidy dataframe to a CSV.

When there are a wide variety of possible values, the multiple values may be
crammed into one column and seperated by a delimiter (such as a comma).
split_lists() is demonstrated on the UCDP dataset’s gwno_a_2nd col-
umn, with the conflict_id and year columns as the unique identifier.

When there are only a few possibilities, the multiple values may be spread
out over “dummy” columns with binary encoding. de_dummify() is demon-
strated in the CoW Alliance dataset (cow_alliance_df) for the 4 alliance
traits columns (defense, neutrality, nonaggression, and entente).

After identifying the func-
tional dependencies, you
will want to create new
tables that conform to
these functional depen-
dencies. We have already
determined which columns
can be functionally deter-
mined by conflict_id
and start_date2 in
ucdp_df. But some of these
columns can be determined
by conflict_id alone.
The new table should have
only those attributes that are
functionally determined by
the whole primary key. decompose_table() makes use of the find_de-
pendent_columns() function to identify the proper columns and create a
new dataframe that drops unnecessary columns and rows. However, further
cleaning/investigation is still needed.

find_candidate_keys() is demonstrated on the UCDP dataset (ucdp_
df). A list of all combinations of columns that can uniquely identify the row,
with a maximum of 3 columns, are returned. The best candidate for primary
key is the combination of conflict_id and year.

Get the full
Tidy Pandas Cookbook

on GitHub
https://github.com/jenna-jordan/tidy-pandas-cookbook

[Tidy Data] is Codd’s 3rd normal form, but with the constraints framed
in statistical language, and the focus put on a single dataset rather than
the many connected datasets common in relational databases.
- Hadley Wickham, Tidy Data (2014)

“
”

• explore datasets in order to detangle functional
dependencies and identify candidate keys

• transform datasets by decomposing the table
into new tables with proper functional dependen-
cies and normalizing multivalued attributes

• verify that the new set of tables obey all necessary
uniqueness constraints (primary keys), integrity con-
straints (foreign keys), and otherwise conform to a
valid relational model

While actually creating the database is not necessary,
the process of tidying the data will result in tables that
are ready to be loaded into a relational database.

My background is in political science - specifically Peace &
Conflict studies - so I like using datasets from this domain. It
helps that these datasets are most definitely not tidy! Each of
the recipes will be demonstrated on datasets from either the
Correlates of War Project (CoW) or the Uppsala Conflict Data
Program (UCDP).

https://www.instagram.com/madruckus.design/
https://jennajordan.me/
https://github.com/jenna-jordan
https://twitter.com/JennaJrdn
https://ischool.illinois.edu/
https://github.com/jenna-jordan/tidy-pandas-cookbook
https://us.pycon.org/2020/online/

